Structural Alteration, Hydration Stability, Heavy Metal Removal Efficiency, and Montmorillonite Porosity Fate by Coupling the Soil Solution pH and a Thermal Gradient

Author:

Mejri Chadha1,Oueslati Walid1ORCID,Amara Abdesslem Ben Haj1

Affiliation:

1. Université de Carthage, Faculté des Sciences de Bizerte, LR19ES20: Ressources, Matériaux, Et Ecosystèmes (RME), 7021 Bizerte, Tunisia

Abstract

Clay minerals are considered as a promising material in the context of geological barrier for the confinement of radioactive and industrial waste. Understanding the usefulness of the smectite mineral, in this approach, remains insufficient. The deep investigation about structural response/changes, hydrate stability, cation exchange process, permeability, and heavy metal/radionuclide adsorption/removal efficiency under external constraints is needed. To explore the structural alteration, the hydration stability, and the evolution of montmorillonite porosity under a first order of external applied constraints coupling, a reference Na-rich montmorillonite specimen is used as a starting material, and three exchangeable heavy metal cations (Ba2+, Cu2+, and Co2+) have been selected. The applied constraint coupling is realized at laboratory scale and assured by simultaneously varying of the soil solution pH and the thermal gradient. The evaluation of the mineral fraction response is established by correlation of quantitative XRD analysis results, thermal analysis, and porosity measurements. The quantitative XRD analysis allows rebuilding of the theoretical model describing the interlamellar space (IS) configurations/damages, structural heterogeneity degrees, and hydrous stability. Obtained results show a dominant interstratified hydration character, for all studied complexes, attributed to a new IS organization versus the applied constraint strength. Furthermore, all samples exhibit a heterogeneous hydration behavior traduced by the coexistence of different layers of type population within the crystallite. Additionally, the theoretical XRD profile decomposition allowed us to prove link between the domination of the segregated stacking layers mode against the constraint strength. Thermal analysis allowed us to develop theoretical models describing the decrease of the water molecule amounts as a function of the increase in temperature and soil solution pH. Moreover, a specific hydration footprint response and an interstratification mapping are assigned for each corresponding stress degrees. The evolution of montmorillonite porosity is determined by adsorption measurement, based on Brunauer, Emmett, and Teller (BET) and Barrett-Joyner-Halenda (BJH) pore size distribution analyses which confirms for all samples, the exfoliation process, and the mesopore diameter rise by increasing the constraint intensity.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Reference131 articles.

1. Crystal structures of clay minerals and their X-ray identification;G. Brown;The Mineralogical Society of Great Britain and Ireland,1982

2. Chemistry of clays and clay minerals;A. C. D. Newman;Mineral Society Monograph, London,1987

3. Hydrous phyllosilicates (exclusive of micas);N. Güven,1988

4. Baseline Studies of the Clay Minerals Society Source Clays: Geological Origin

5. Effects of Layer Charge, Charge Location, and Energy Change on Expansion Properties of Dioctahedral Smectites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3