Machine Learning-Based Hearing Aid Fitting Personalization Using Clinical Fitting Data

Author:

Mondol S. I. M. M. Raton1ORCID,Kim Hyun Ji2,Kim Kyu Sung2,Lee Sangmin1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea

2. Department of Otolaryngology, Inha University Hospital, Incheon 22332, Republic of Korea

Abstract

The initial software fitting prescribed by the fitting formula largely depends on the patient’s hearing loss, which may not be the optimal preference for a particular user. Certain criteria must also be readjusted by an audiologist to meet the user-specific requirements. Therefore, this study focuses on the novel application of a neural network (NN) technique to build a suitable fitting algorithm with prescribed hearing loss and the corresponding preferred gain to minimize the gap between optimized fittings. The algorithm intended to learn the hearing preferences of an individual user such that the initial fitting may be optimized. These findings demonstrate the efficiency of the algorithm, with and without additional features. Using the clinical fitting data, the average mean square error (MSE) for the simple NN algorithm was 5.4183%. By adding additional features to the data, the algorithm performed better, and the average MSE was as low as 5.2530%. However, the algorithm outperformed Company A fitting software, as the MSE was the highest at 5.4748%. As the company’s automatic fitting has a noticeable discrepancy with clinical fitting records, the impeccable results from this study can lead to a better path towards fitting satisfaction, thus benefiting the hearing-impaired community to a larger extent.

Funder

Ministry of Science ICT and Future Planning

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3