Neural Network Model for Perceptual Evaluation of Product Modelling Design Based on Multimodal Image Recognition

Author:

Wu Jie1ORCID,Jia Long2

Affiliation:

1. School of Anyang Institute of Technology, Anyang, Henan 455000, China

2. Anyang Institute of Technology, School of Art and Design, Anyang, Henan 455000, China

Abstract

With the homogenization of product function and performance, the design technology for product appearance quality has been increasingly valued by academia and industry and has become an effective technical way to meet the continuously growing diversified and personalized needs of consumers. The appearance quality attribute of a product can be characterized or described by its appearance image. Data-driven product appearance image design is based on the quantitative data of product appearance and consumer emotional needs and completes the product appearance through computer-aided design technology and intelligent algorithms. Design innovation can help companies quickly respond to consumers’ emotional needs and effectively improve design quality and product competitiveness. When visual objects are disturbed in complex scenes, the issues such as how the human brain coordinates multisensory information processing and what neural processing mechanisms follow are still unclear. In this paper, a visual object recognition experiment in a complex scene was designed and the brain activation signals of three modalities of noise, added audio-visual (AVd), single visual noise and noise (Vd), and single-audio (A), were recorded. The properties and neural processing mechanisms of multisensory modulation of auditory stimuli during noisy image recognition were explored. Using the conjunction method combined with the classic “max criterion” rule, it was found that only when a certain amount of noise was added to the visual stimulus, the integration area changed. The product appearance has a decisive influence on the user’s product perceptual attribute preference and greatly affects the consumer’s satisfaction. The importance of product appearance image design is increasingly prominent. In addition, pattern analysis of brain activation signals confirmed that semantically consistent sounds can facilitate the recognition of noisy images and this facilitation shows a certain category selectivity when subdivided into categories. Using the analysis method of functional connectivity, a functional connectivity network containing nodes at different integration levels was constructed to explore the overall characteristics and processing patterns of the multisensory network. Through the analysis of the network connection relationship, it is found that the prefrontal cortex, STS, and lateral occipital lobe are the nodes with more aggregation in the network, and their functions are similar to the hub in the network. The brain functional network was constructed, and functional connectivity was used to explore the connection characteristics of the network and the multisensory modulation mechanism between different processing levels of the brain.

Funder

Anyang Institute of Technology

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3