Effective Computational Approach for Prediction and Estimation of Space Object Breakup Dispersion during Uncontrolled Reentry

Author:

Lee Deok-Jin1ORCID,Choi Eun Jung2,Cho Sungki2,Jo Jung-Hyun2ORCID,No Tae Soo3

Affiliation:

1. School of Mechanical & Automotive Engineering, Kunsan National University, Gunsan 54150, Republic of Korea

2. Center for Space Situational Awareness, Korea Astronomy and Space Science Institute, Daejeon 305-348, Republic of Korea

3. Department of Aerospace Engineering, Chonbuk National University, Jeonju 54896, Republic of Korea

Abstract

This paper provides an effective approach for the prediction and estimation of space debris due to a vehicle breakup during uncontrolled reentry. For an advanced analysis of the time evolution of space debris dispersion, new efficient computational approaches are proposed. A time evolution of the dispersion of space pieces from a breakup event to the ground impact time is represented in terms of covariance ellipsoids, and in this paper, two covariance propagation methods are introduced. First, a derivative-free statistical linear regression method using the unscented transformation is utilized for performing a covariance propagation. Second, a novel Gaussian moment-matching method is proposed to compute the estimation of the covariance of a debris dispersion by using a Gauss-Hermite cubature-based numerical integration approach. Compared to a linearized covariance propagation method such as the Lyapunov covariance equation, the newly proposed Gauss-Hermite cubature-based covariance computation approach could provide high flexibilities in terms of effectively representing an initial debris dispersion and also precisely computing the time evolution of the covariance matrices by utilizing a larger set of sigma points representing debris components. In addition, we also carry out a parametric study in order to analyze the effects on the accuracy of the covariance propagation due to modeling uncertainties. The effectiveness of the newly proposed statistical linear regression method and the Gauss-Hermite computational approach is demonstrated by carrying out various simulations.

Funder

Korea Astronomy and Space Science Institute

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3