Wind Power Prediction Based on Nonlinear Partial Least Square

Author:

Wang Qian1ORCID,Lei Yang1ORCID,Cao Hui2ORCID

Affiliation:

1. School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China

2. Shaanxi Key Laboratory of Smart Grid & the State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Wind power prediction is important for the smart grid safe operation and scheduling, and it can improve the economic and technical penetration of wind energy. The intermittent and the randomness of wind would affect the accuracy of prediction. According to the sequence correlation between wind speed and wind power data, we propose a method for short-term wind power prediction. The proposed method adopts the wind speed in every sliding data window to obtain the continuous prediction of wind power. Then, the nonlinear partial least square is adopted to map the wind speed under the time series to wind power. The model carries the neural network as the nonlinear function to describe the inner relation, and the outputs of hidden layer nodes are the extension term of the original independent input matrix to partial least squares regression. To verify the effectiveness of the proposed algorithm, the real data of wind power with different working conditions are adopted in experiments. The proposed method, backpropagation neural network, radial basis function neural network, support vector machine, and partial least square are performed on the real data and their effectiveness is compared. The experimental results show that the proposed algorithm has higher precision, and the real power running curves also verify that the proposed method can predict the wind power in short-term effectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3