Hydrogen Sulfide Donor NaHS Improves Metabolism and Reduces Muscle Atrophy in Type 2 Diabetes: Implication for Understanding Sarcopenic Pathophysiology

Author:

Bitar Milad S.12ORCID,Nader Joelle3ORCID,Al-Ali Waleed4,Al Madhoun Ashraf5,Arefanian Hossein2,Al-Mulla Fahd5

Affiliation:

1. Department of Pharmacology & Toxicology, Kuwait University, Faculty of Medicine, Kuwait

2. Immunology Unit, Dasman Diabetes Institute, Kuwait

3. Department of Mathematics & Natural Sciences, American University of Kuwait, Kuwait

4. Department of Pathology, Kuwait University, Faculty of Medicine, Kuwait

5. Functional Genomics Unit, Dasman Diabetes Institute, Kuwait

Abstract

Sarcopenia, a loss of muscle mass and functionality, constitutes a major contributor to disability in diabetes. Hydrogen sulfide (H2S) dynamics and muscle mass regulatory signaling were studied in GK rats, a model for type 2 diabetes (T2D). GK rats exhibited a number of features that are consistent with sarcopenia and T2D including loss of muscle mass and strength, in addition to glucose intolerance, insulin resistance, and impaired β-cell responsiveness to glucose. Mechanistically, activation levels of Akt, a key modulator of protein balance, were decreased in T2D. Consequently, we confirmed reduced activity of mTOR signaling components and higher expression of atrophy-related markers typified by FoxO1/atrogin-1/MuRF1 and myostatin-Smad2/3 signaling during the course of diabetes. We observed in GK rat reduced antioxidant capacity (↓GSH/GSSG) and increased expression and activity of NADPH oxidase in connection with augmented rate of oxidation of lipids, proteins, and DNA. H2S bioavailability and the expression of key enzymes involved in its synthesis were suppressed as a function of diabetes. Interestingly, GK rats receiving NaHS displayed increased muscle Akt/mTOR signaling and decreased expression of myostatin and the FoxO1/MuRF1/atrogin-dependent pathway. Moreover, diabetes-induced heightened state of oxidative stress was also ameliorated in response to NaHS therapy. Overall, the current data support the notion that a relationship exists between sarcopenia, heightened state of oxidative stress, and H2S deficiency at least in the context of diabetes. Moreover, treatment with a potent H2S donor at an early stage of diabetes is likely to mitigate the development of sarcopenia/frailty and predictably reduces its devastating sequelae of amputation.

Funder

Kuwait Foundation for Advancement of Sciences

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3