FOXC2 Alleviates Myocardial Ischemia-Reperfusion Injury in Rats through Regulating Nrf2/HO-1 Signaling Pathway

Author:

Wang Rui1ORCID,Wu Yonggang1,Jiang Shoutao1

Affiliation:

1. Department of Cardiology, Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, China

Abstract

Objective. Myocardial ischemia-reperfusion injury (MIRI) is the leading cause of death in patients with cardiovascular disease. The purpose of this study is to investigate the effect and mechanism of forkhead box C2 (FOXC2) on MIRI in rats. Methods. We made ischemia-reperfusion (I/R) models for rats by performing I/R surgery. After 3 hours, 3 days, and 7 days of reperfusion, we detected the structure and function of rat myocardium by 2, 3, 5-triphenyl tetrazolium chloride staining, echocardiography, lactate dehydrogenase kit, and haematoxylin-eosin staining. The change of FOXC2 expression in myocardial tissue was also detected. Then, we increased the expression of FOXC2 in rats by adenovirus transfection to clarify the effect of FOXC2 on changes of oxidative stress and inflammation of rat myocardium. In addition, we detected the effect of FOXC2 overexpression plasmid on the function of H9c2 cells in vitro. The expression changes of Nrf2/HO-1 in myocardial cells were also detected to clarify the mechanism of action of FOXC2. Results. The expression of FOXC2 in I/R rats was significantly lower than that in the sham group. After overexpressing FOXC2 in I/R rats, we found that the expression of SOD1/2 of rat myocardium and inflammatory factors in the serum were significantly reduced. Overexpression of FOXC2 also increased the viability and antioxidant capacity of H9c2 cells. In addition, FOXC2 was found to increase the activity of the Nrf2/HO-1 signaling pathway in myocardial cells, and the inhibition of Nrf2/HO-1 signaling pathway attenuated the protective effect of FOXC2 on myocardial cells. Conclusions. MIRI in rats was accompanied by low expression of FOXC2 in myocardial tissue. Overexpression of FOXC2 reduces the level of inflammation and oxidative stress in myocardial tissue by promoting the Nrf2/HO-1 signaling pathway, thereby alleviating MIRI.

Publisher

Hindawi Limited

Subject

Biochemistry, medical,Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3