Affiliation:
1. College of Automation, Guangdong University of Technology, Guangzhou 510006, China
Abstract
There exist two different types of equilibrium points in 3-D autonomous systems, named as saddle foci of index 1 and index 2, which are crucial for chaos generation. Although saddle foci of index 2 have been usually applied for creating double-scroll or double-wing chaotic attractors, saddle foci of index 1 are further considered for chaos generation in this paper. A novel approach for constructing chaotic systems is investigated by applying the switching control strategy and yielding a heteroclinic loop which connects two saddle foci of index 1. A basic 3-D linear system with an arbitrary normal direction of the eigenplane, possessing a saddle focus of index 1 whose corresponding eigenvalues satisfy the Shil'nikov inequality, is first introduced. Then a heteroclinic loop connecting two saddle foci of index 1 will be formed by applying the switching control strategy to the basic 3-D linear system. The heteroclinic loop consists of an unstable manifold, a stable manifold, and a heteroclinic point. Under the necessary conditions for forming the heteroclinic loop, the intended two-segmented piecewise linear system which exhibits the chaotic behavior in the sense of the Smale horseshoe can be finally constructed. An illustrative example is given, confirming the effectiveness of the proposed method.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献