An Improved Security Authentication Protocol for Lightweight RFID Based on ECC

Author:

Wei Guo-heng1,Qin Yan-lin1ORCID,Fu Wei1

Affiliation:

1. Information Security Department, Naval University of Engineering, Wuhan, 430033 Hubei, China

Abstract

The security, privacy, and operation efficiency of radio frequency identification (RFID) must be fully measured in practical use. A few RFID authentication schemes based on elliptic curve cryptography (ECC) have been proposed, but most of them cannot resist the existing attacks. The scheme presented by Qian et al. could not resist impersonation attack according to our security analysis. Then, we propose a novel lightweight RFID authentication scheme, which is proved that it can resist server spoofing attack, tag masquerade attack, and provide other security properties of a RFID authentication scheme. Comparisons of computation and communication cost demonstrate that the proposed scheme is more suitable for the resource-constrained RFID authentication.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Reference16 articles.

1. Radio frequency identification (RFID)

2. A lightweight RFID security scheme based on elliptic curve cryptography;Q. Qian;International Journal of Network Security,2016

3. A novel mutual authentication scheme based on quadratic residues for RFID systems

4. Cryptanalysis of Some RFID Authentication Protocols

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3