Dynamical Behavior of Fractional-Order Delayed Feedback Control on the Mathieu Equation by Incremental Harmonic Balance Method

Author:

Wen Shaofang12ORCID,Shen Yongjun13ORCID,Niu Jiangchuan13ORCID,Liu Yunfei2ORCID

Affiliation:

1. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

2. Key Laboratory of Traffic Safety and Control of Hebei Province, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

3. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

Abstract

In this study, the dynamical analysis of the Mathieu equation with multifrequency excitation under fractional-order delayed feedback control is investigated by the incremental harmonic balance method (IHBM). IHBM is applied to the fractional-order delayed feedback control system, and the general formulas of the first-order approximate periodic solution for the Mathieu equation are derived. Caputo’s definition is adopted to process the fractional-order delayed feedback term. The general formulas of this system are suitable for not only the weakly but also the strongly nonlinear fractional-order system. Through the analysis of the general formulas of this system, it shows that fractional-order delayed feedback control has two functions, which are velocity delayed feedback control and displacement delayed feedback control. Next, the numerical simulation of the system is carried out. The comparison between the approximate analytical solution and the numerical iterative result is made, and the accuracy of the approximate analytical result by IHBM is proved to be high. At last, the effects of the time delay, feedback coefficient, and fractional order are investigated, respectively. It is generally known that time delay is common and inevitable in the control system. But the fractional order can be used to adjust the influence caused by time delay in fractional-order delayed feedback control. Those new system characteristics will provide theoretical guidance to the design and the control of this kind system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3