EmuStack: An OpenStack-Based DTN Network Emulation Platform (Extended Version)

Author:

Li Haifeng1ORCID,Zhou Huachun1,Zhang Hongke1,Feng Bohao1,Shi Wenfeng1

Affiliation:

1. School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

With the advancement of computing and network virtualization technology, the networking research community shows great interest in network emulation. Compared with network simulation, network emulation can provide more relevant and comprehensive details. In this paper, EmuStack, a large-scale real-time emulation platform for Delay Tolerant Network (DTN), is proposed. EmuStack aims at empowering network emulation to become as simple as network simulation. Based on OpenStack, distributed synchronous emulation modules are developed to enable EmuStack to implement synchronous and dynamic, precise, and real-time network emulation. Meanwhile, the lightweight approach of using Docker container technology and network namespaces allows EmuStack to support a (up to hundreds of nodes) large-scale topology with only several physical nodes. In addition, EmuStack integrates the Linux Traffic Control (TC) tools with OpenStack for managing and emulating the virtual link characteristics which include variable bandwidth, delay, loss, jitter, reordering, and duplication. Finally, experiences with our initial implementation suggest the ability to run and debug experimental network protocol in real time. EmuStack environment would bring qualitative change in network research works.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Network Emulation Testbed Capabilities for Prototyping Space DTN Software and Protocols;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS);2024-05-20

2. Network Security Evaluation for Space-Ground Integrated Networks Based on Network Simulation;2023 8th International Conference on Data Science in Cyberspace (DSC);2023-08-18

3. Network Simulators for Satellite-Terrestrial Integrated Networks: A Survey;IEEE Access;2023

4. Kalman prediction-based virtual network experimental platform for smart living;Computer Communications;2021-09

5. Cloud-Based Experimental Platform for the Space-Ground Integrated Network;Wireless Communications and Mobile Computing;2020-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3