Gas-Phase Synthesis of Bimetallic Oxide Nanoparticles with Designed Elemental Compositions for Controlling the Explosive Reactivity of Nanoenergetic Materials

Author:

Ahn Ji Young1,Kim Whi Dong1,Kim Jae Hyun2,Kim Ji Hoon2,Lee Jae Keun3,Kim Jong Man2,Kim Soo H.2

Affiliation:

1. Department of Nano Fusion Technology, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea

2. Department of Nanosystem and Nanoprocess Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea

3. School of Mechanical Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea

Abstract

We demonstrate a simple and viable method for controlling the energy release rate and pressurization rate of nanoenergetic materials by controlling the relative elemental compositions of oxidizers. First, bimetallic oxide nanoparticles (NPs) with a homogeneous distribution of two different oxidizer components (CuO and Fe2O3) were generated by a conventional spray pyrolysis method. Next, the Al NPs employed as a fuel were mixed with CuO-Fe2O3bimetallic oxide NPs by an ultrasonication process in ethanol solution. Finally, after the removal of ethanol by a drying process, the NPs were converted into energetic materials (EMs). The effects of the mass fraction of CuO in the CuO-Fe2O3bimetallic oxide NPs on the explosive reactivity of the resulting EMs were examined by using a differential scanning calorimeter and pressure cell tester (PCT) systems. The results clearly indicate that the energy release rate and pressurization rate of EMs increased linearly as the mass fraction of CuO in the CuO-Fe2O3bimetallic oxide NPs increased. This suggests that the precise control of the stoichiometric proportions of the strong oxidizer (CuO) and mild oxidizer (Fe2O3) components in the bimetallic oxide NPs is a key factor in tuning the explosive reactivity of EMs.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3