Pore Structure Differentiation between Deltaic and Epicontinental Tight Sandstones of the Upper Paleozoic in the Eastern Linxing Area, Ordos Basin, China

Author:

Deng Jimei1ORCID,Zeng Huan2ORCID,Wu Peng3ORCID,Du Jia3ORCID,Gao Jixian3ORCID,Zhao Fei3ORCID,Jiang Zhixun3ORCID

Affiliation:

1. School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China

2. College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

3. China United Coalbed Methane Corporation Limited, Beijing 100016, China

Abstract

Research on tight gas reservoirs in the eastern margin of the Ordos Basin, China, has recently become a hot spot. This paper mainly studies the reservoir characteristics of tight sandstone in the north-central area close to the provenance in eastern Linxing. Cast thin section, scanning electron microscopy, high-pressure mercury injection, and X-ray diffraction (XRD) were applied to discriminate the tight sandstone reservoir differences between the Permian Taiyuan and Shanxi formations in the study area. The results show that the deltaic tight sandstones in the Shanxi Formation are dominated by lithic quartz sandstone and lithic sandstone with an average porosity of 2.3% and permeability of 0.083 mD. The epicontinental tight sandstones in the Taiyuan Formation are mainly lithic sandstone and lithic quartz sandstone, with average porosities and permeabilities of 6.9% and 0.12 mD, respectively. The pore type is dominated by secondary dissolution pores, containing a small number of primary pores, and fractures are not developed. The capillary pressure curves of the Taiyuan Formation sandstone are mainly of low displacement pressure, high mercury saturation, and mercury withdrawal efficiency, while the Shanxi Formation sandstone is mainly of high displacement pressure, low mercury saturation, and withdrawal efficiency. The diagenetic evolution of sandstone in the Shanxi Formation is in meso-diagenesis stage A, and the Taiyuan Formation has entered meso-diagenesis stage B. The siliceous cement in the Taiyuan Formation sandstone enhanced the sandstone resistance to compaction and retained some residual intergranular pores. The pore types in the Shanxi Formation sandstone are all secondary pores, while secondary pores in the Taiyuan Formation sandstone account for approximately 90%. The results can be beneficial for tight gas production in the study area and similar basins.

Funder

Major National Science and Technology Project of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3