Comparative Analysis of Drilling Behaviour of Synthetic and Natural Fiber-Based Composites

Author:

Mohan Kumar A.1ORCID,Rajasekar R.1ORCID,Manoj Kumar P.2ORCID,Parameshwaran R.1ORCID,Karthick Alagar3ORCID,Muhibbullah M.4ORCID

Affiliation:

1. School of Building and Mechanical Sciences, Kongu Engineering College, Perundurai 638060, Tamil Nadu, India

2. Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India

3. Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India

4. Department of Electrical and Electronic Engineering, Bangladesh University, Dhaka 1207, Bangladesh

Abstract

For comparison, the drilling behaviour of abaca fiber-reinforced polymer (AFRP) composites and Kevlar-reinforced epoxy polymer (KFRP) composites has been studied in the specified experimental condition. The different geometrical drilling tools have been used for the investigation, namely, candlestick (T1), core (T2), standard twist drill (T3), and step cone (T4). The tool feed of 30, 45, and 60 m/min and rotational speed of 1000, 1500, and 2000 rpm have been used for the investigation. The thrust force is chosen as a response parameter for this study. The results revealed that, at lesser rotational speed and tool feed, the thrust force has declined. The result obtained correlates with the abaca fiber-based systems. However, the thrust force of KFRP is higher compared to AFRP composite systems. The axial force generated by candlestick drill is minimal compared to the other drill bits. The following may be responsible for lower thrust force: (1) the axial force distributes circumferential of the cutting tool instead of focusing at the center and (2) the interfacial adhesiveness between the matrix and the fiber is higher. The optimization of drilling process parameters, namely, tool feed and rotational speed on thrust force, has been studied. The results reveal that the tool feed contributed more to axial force compared to rotational speed.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3