Influence of Hysteresis on the Vibration Control of a Smart Beam with a Piezoelectric Actuator by the Bouc–Wen Model

Author:

Zhang Ting1ORCID

Affiliation:

1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

Abstract

The hysteresis property in a smart structure has attracted much attention from researchers for several decades. Hysteresis not only affects the response precision of the smart structure but also threatens the stability of the system. This paper focuses on how the hysteresis property influences the control effect of vibration suppression for a smart beam. Furthermore, the Bouc–Wen model is adopted to describe the hysteresis property of a smart beam and the hysteresis parameters of the hysteresis model are identified with a genetic algorithm. Based on the identification results, the hysteresis model is validated to represent the hysteresis property of the smart beam. Based on the hysteresis model, model reference adaptive control is designed to explore the influence of hysteresis on the vibration control of the smart beam. With some simulations and experiments, it is found that the vibration control effect is influenced when the hysteresis item changes. The vibration control effect will be improved when the hysteresis coefficient in the Bouc–Wen model, as the expected objective model of the adaptive reference model, is within a proper numerical range where the control system is stable. Furthermore, when the time delay is considered in the closed-loop control system, the principle of the hysteresis influence is different. The results indicate that the hysteresis property affects not only the control effect but also the stability of the control system for a smart cantilever beam.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3