Integrative Bioinformatics Analysis Identifies DDX60 as a Potential Biomarker for Systemic Lupus Erythematosus

Author:

Chen Wu1ORCID,Li Zhi-Yu2,Huang Lin13,Zhou Dong-Hai4,Luo Wen-Qing4,Zhang Xu-Feng4,Li Lin1,Wen Cheng-Ping13ORCID,Wang Qiao13ORCID

Affiliation:

1. Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China

2. The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China

3. Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China

4. The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China

Abstract

Background. Systemic lupus erythematosus (SLE) is an autoimmune disease with strong heterogeneity, leading to variable clinical symptoms, which makes diagnosis and activity evaluation difficult. Methods. The original dataset of GSE88884 was analyzed to screen differentially expressed genes (DEGs) of SLE and the correlation between DEGs and clinical parameters (SLEDAI, anti-dsDNA, C3, and C4). The result was validated by microarray GSE121239 and SLE patients with RT-qPCR. Next, receiver operator characteristic (ROC) analysis, correlation analysis, and ordinal logistic regression were applied, respectively, to evaluate the capability of diagnosis and prediction of the candidate biomarker. Subsequently, the biological functions of the candidate biomarker were investigated through KEGG and GO enrichment, protein–protein interaction network, and the correlation matrix. Results. A total of 283 DEGs were screened, and seven of them were overlapped with SLE-related genes. DDX60 was identified as the candidate biomarker. Analyses of GSE88884, GSE121239, and SLE patients with RT-qPCR indicated that DDX60 expression level is significantly higher in patients with high disease activity. ROC analysis and the area under the ROC curve ( AUC = 0.8818 ) suggested that DDX60 has good diagnostic performance. DDX60 expression level was positively correlated with SLEDAI scores ( r = 0.24 ). For every 1-unit increase in DDX60 expression value, the odds of a higher stage of activity of SLE disease are multiplied by 1.47. The function of DDX60 mainly focuses on IFN-I-induced antiviral activities, RIG-I signaling, and innate immune. Moreover, DDX60 plays a synergistic role with DDX58, IFIH1, OASL, IFIT1, and other related genes in the SLE pathogenesis. Conclusions. DDX60 is differently expressed in SLE, and it is significantly related to both serological indicators and the disease activity of SLE. We suggested that DDX60 might be a potential biomarker for SLE diagnosis and management.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3