Affiliation:
1. School of Civil Engineering, Central South University, No. 22, Shaoshan South Road, Central South University Railway Campus, Changsha, Hunan Province 410075, China
Abstract
This paper focuses on a novel approach for the quasi-plane strain-softening problem of the cylindrical cavity expansion based on generalized Hoek-Brown failure criterion. Because the intermediate principal stress is deformation-dependent, the quasi-plane strain problem is defined to implement the numerical solution of the intermediate principal stress. This approach assumes that the initial total strain in axial direction is a nonzero constant (ε0) and the plastic strain in axial direction is not zero. Based on 3D failure criterion, the numerical solution of plastic strain is given. Solution of the intermediate principal stress can be derived by Hooke’s law. The radial and circumferential stress and strain considering the intermediate principal stress are obtained by the proposed approach of the intermediate principal stress, stress equilibrium equation, and generalized H-B failure criterion. The numerical results can be used for the solution of strain-softening surrounding rock. In additional, the validity and accuracy of the proposed approach are verified with the published results. At last, parametric studies are carried out using MATLAB programming to highlight the influences of the out-of-plane stress on the stress and displacement of surrounding rock.
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献