Affiliation:
1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
2. Shanghai Sachs Powertrain Components Systems Co. Ltd., Shanghai 201799, China
Abstract
This paper is aimed to investigate the influence of dual-mass flywheel (DMF) kinetic parameters on driveline torsional vibration in engine start-up process, which prescribes the design requirements under start-up condition for DMF matching. On the basis of driveline excitation analysis during engine start-up, the analytical model of DMF driveline torsional vibration system is built and simulated. The vehicle start-up test is conducted and compared with the simulation results. On account of the partial nonstationary characteristic of driveline during start-up, the start-up process is separated into 3 phases for discussing the influence of DMF rotary inertia ratio, hysteresis torque, and nonlinear torsional stiffness on attenuation effect. The test and simulation results show that the DMF undergoes severe oscillation when driveline passes through resonance zone, and the research model is verified to be valid. The DMF design requirements under start-up condition are obtained: the appropriate rotary inertia ratio (the 1st flywheel rotary inertia-to-the 2nd flywheel rotary inertia ratio) is 0.7∼1.1; the interval of DMF small torsion angle should be designed as being with small damping, while large damping is demanded in the interval of large torsion angle; DMF should be equipped with low torsional stiffness when working in start-up process.
Funder
National Key R&D Plan of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献