A Novel Fuzzy Model Predictive Control of a Gas Turbine in the Combined Cycle Unit

Author:

Hou Guolian1ORCID,Gong Linjuan1,Dai Xiaoyan1,Wang Mengyi1,Huang Congzhi12

Affiliation:

1. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China

2. Colleges and Universities Key Laboratory of Intelligent Integrated Automation, Guilin University of Electronic Technology, Guangxi 541004, China

Abstract

The complex characteristics of the gas turbine in a combined cycle unit have brought great difficulties in its control process. Meanwhile, the increasing emphasis on the efficiency, safety, and cleanliness of the power generation process also makes it significantly important to put forward advanced control strategies to satisfy the desired control demands of the gas turbine system. Therefore, aiming at higher control performance of the gas turbine in the gas-steam combined cycle process, a novel fuzzy model predictive control (FMPC) strategy based on the fuzzy selection mechanism and simultaneous heat transfer search (SHTS) algorithm is presented in this paper. The objective function of rolling optimization in this novel FMPC consists of two parts which represent the state optimization and output optimization. In the weight coefficient selection of those two parts, the fuzzy selection mechanism is introduced to overcome the uncertainties existing in the system. Furthermore, on account of the rapidity of the control process, the SHTS algorithm is used to solve the optimization problem rather than the traditional quadratic programming method. The validity of the proposed method is confirmed through simulation experiments of the gas turbine in a combined power plant. The simulation results demonstrate the remarkable superiorities of the adopted algorithm with higher control precision and stronger disturbance rejection ability as well as less optimization time.

Funder

Colleges and Universities Key Laboratory of Intelligent Integrated Automation

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3