An Improved 3D Shape Recognition Method Based on Panoramic View

Author:

Zheng Qiang12ORCID,Sun Jian12ORCID,Zhang Le12ORCID,Chen Wei12ORCID,Fan Huanhuan12ORCID

Affiliation:

1. State Key Laboratory for Strength & Vibration, School of Aerospace, Xi’an Jiaotong University, Xi’an, 710049, China

2. Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, Xi’an Jiaotong University, Xi’an, 710049, China

Abstract

Recognition of three-dimensional (3D) shape is a remarkable subject in computer vision systems, because of the lack of excellent shape representations. With the development of 2.5D depth sensors, shape recognition is becoming more important in practical applications. Many methods have been proposed to preprocess 3D shapes, in order to get available input data. A common approach employs convolutional neural networks (CNNs), which have become a powerful tool to solve many problems in the field of computer vision. DeepPano, a variant of CNN, converts each 3D shape into a panoramic view and shows excellent performance. It is worth paying attention to the fact that both serious information loss and redundancy exist in the processing of DeepPano, which limits further improvement of its performance. In this work, we propose a more effective method to preprocess 3D shapes also based on a panoramic view, similar to DeepPano. We introduce a novel method to expand the training set and optimize the architecture of the network. The experimental results show that our approach outperforms DeepPano and can deal with more complex 3D shape recognition problems with a higher diversity of target orientation.

Funder

Equipment Development Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3