Method Development for Simultaneously Determining Indomethacin and Nicotinamide in New Combination in Oral Dosage Formulations and Co-Amorphous Systems Using Three UV Spectrophotometric Techniques

Author:

Sarkis Nazira1,Sawan Abdulkader1ORCID

Affiliation:

1. Department of Analytical and Food Chemistry, Faculty of Pharmacy, University of Aleppo, Aleppo, Syria

Abstract

This research aims to develop methods for simultaneously determining indomethacin (IND) and nicotinamide (NCT) in binary mixtures, immediate-release capsules, sustained-release capsules, and co-amorphous systems, which were designed in 2021 to improve the solubility, dissolution rate, and stability of the amorphous state of indomethacin. Moreover, this new combination may have also other possible medical benefits. Therefore, there is a need to have simple, sensitive, and precise developed methods for simultaneous quantification analysis of IND/NCT in several different ratios. Three UV-spectrophotometry techniques were deployed: zero-crossing point in the second-order derivative, dual-wavelength in the first-order derivative, and ratio subtraction coupled with spectrum subtraction. The limit of detection and the limit of quantifications (LOD and LOQ) for IND were 0.41 and 1.25, 0.55 and 1.66, and 0.53 and 1.62 μg/mL, respectively, while for NCT were 0.53 and 1.59, 0.38 and 1.14, and 0.36 and 1.08 μg/mL, respectively. All methods were linear at least in the range of 2.5–40.0 μg/mL. All proposed methods were validated according to ICH guidelines and their application on the dosage formulations was carried out. Finally, the proposed methods were compared to a reference method for each IND and NCT, and no significant statistical variance was found.

Publisher

Hindawi Limited

Reference42 articles.

1. Pubchem compound summary for CID 3715, indomethacin;National Center for Biotechnology Information,2023

2. PubChem compound summary for CID 936, nicotinamide;National Center for Biotechnology Information,2023

3. The role of nicotinamide in acne treatment

4. Nicotinamide Augments the Anti-Inflammatory Properties of Resveratrol through PARP1 Activation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3