Affiliation:
1. College of Computer Science, Chongqing University, Chongqing 400044, China
Abstract
As one of the cores of data analysis in large social networks, community detection has become a hot research topic in recent years. However, user’s real social relationship may be at risk of privacy leakage and threatened by inference attacks because of the semitrusted server. As a result, community detection in social graphs under local differential privacy has gradually aroused the interest of industry and academia. On the one hand, the distortion of user’s real data caused by existing privacy-preserving mechanisms can have a serious impact on the mining process of densely connected local graph structure, resulting in low utility of the final community division. On the other hand, private community detection requires to use the results of multiple user-server interactions to adjust user’s partition, which inevitably leads to excessive allocation of privacy budget and large error of perturbed data. For these reasons, a new community detection method based on the local differential privacy model (named LDPCD) is proposed in this paper. Due to the introduction of truncated Laplace mechanism, the accuracy of user perturbation data is improved. In addition, the community divisive algorithm based on extremal optimization (EO) is also refined to reduce the number of interactions between users and the server. Thus, the total privacy overhead is reduced and strong privacy protection is guaranteed. Finally, LDPCD is applied in two commonly used real-world datasets, and its advantage is experimentally validated compared with two state-of-the-art methods.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献