LDPCD: A Novel Method for Locally Differentially Private Community Detection

Author:

Zhang Zhejian1ORCID

Affiliation:

1. College of Computer Science, Chongqing University, Chongqing 400044, China

Abstract

As one of the cores of data analysis in large social networks, community detection has become a hot research topic in recent years. However, user’s real social relationship may be at risk of privacy leakage and threatened by inference attacks because of the semitrusted server. As a result, community detection in social graphs under local differential privacy has gradually aroused the interest of industry and academia. On the one hand, the distortion of user’s real data caused by existing privacy-preserving mechanisms can have a serious impact on the mining process of densely connected local graph structure, resulting in low utility of the final community division. On the other hand, private community detection requires to use the results of multiple user-server interactions to adjust user’s partition, which inevitably leads to excessive allocation of privacy budget and large error of perturbed data. For these reasons, a new community detection method based on the local differential privacy model (named LDPCD) is proposed in this paper. Due to the introduction of truncated Laplace mechanism, the accuracy of user perturbation data is improved. In addition, the community divisive algorithm based on extremal optimization (EO) is also refined to reduce the number of interactions between users and the server. Thus, the total privacy overhead is reduced and strong privacy protection is guaranteed. Finally, LDPCD is applied in two commonly used real-world datasets, and its advantage is experimentally validated compared with two state-of-the-art methods.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3