Rotor Transverse Slots’ Influence on Negative Sequence Loss and Heat Distribution Prediction of Large Generators Based on Improved Radial Basis Function Process Neural Network

Author:

Guo Wu1ORCID,Guo Jian2

Affiliation:

1. College of Communication and Electronic Engineering, Qiqihar University, Qiqihar 161000, China

2. College of Architecture and Civil Engineering, Qiqihar University, Qiqihar 161000, China

Abstract

Owing to the advantages of scientific computation and the data feature support provided by artificial intelligence technology, the theoretical exploration and application research of new computing methods for large generators, one of the most expensive energy equipment in a power system, has become a research hotspot toward solving the bearing limit and operation capacity under abnormal working conditions. Because of many factors affecting the distribution of negative sequence loss and temperature rise that have an extremely complex nonlinear relationship, the traditional calculation and prediction methods of negative sequence conditions cannot suitably reflect the time accumulation effect. Therefore, a prediction method of rotor steady-state negative sequence heating based on radial basis function process neural network is proposed in this paper, and a negative sequence working condition prediction model is established. Accordingly, this study focuses on the study of the relationship among negative sequence heating characteristics, negative sequence component proportion, and transverse slot; additionally, their influence degree, variation relationship, and main principles are further explored that provide a theoretical basis for the design and operation of large generators. As observed from the test results, the steady-state negative sequence condition prediction method based on the improved genetic algorithm radial basis function process neural network features high accuracy; it is a feasible prediction method, specifically for negative sequence conditions of large generators.

Funder

Special Research Project of Basic Business in Colleges and Universities

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3