Affiliation:
1. Department of Pathology, Huai’an Key Laboratory of Gastric Cancer, Jiangsu College of Nursing, Huai’an, Jiangsu 223001, China
Abstract
Background. Prostate cancer (PCa) is one of the most common malignancies in men. Increasing evidence has demonstrated that dysregulation of long noncoding RNAs (lncRNAs) is closely related to carcinogenesis and cancer progression. lncRNA NEAT1 has recently been identified as a carcinogenic regulator of multiple cancers; however, the role of NEAT1 on PCa is still poorly understood. Methods. Kaplan–Meier was conducted to determine the overall survival rate in PCa patients with aberrant NEAT1 levels. qRT-PCR analysis was performed to detect expressions of NEAT1 and miR-766-5p in tissues and cells. In addition, CCK-8, colony formation, flow cytometry analysis, wound healing, and transwell assay were conducted to determine cell proliferation, cell arrest, apoptosis, migration, and invasion. The western blot assay was utilized to determine E2F3 and cell growth-related proteins. The relationship between NEAT1 and miR-766-5p or miR-766-5p and E2F3 was verified by correlation analysis and dual-luciferase reporter assay. Results. Here, we find that NEAT1 is overexpressed in PCa tissues and cell lines. Besides, silencing of NEAT1 inhibits cell proliferation, invasion, and migration and promotes cell apoptosis and cell cycle arrest. Further mechanistic studies find that NEAT1 sponges miR-766-5p, and miRNA-766-5p is negatively correlated with the expression of NEAT1. In addition, the functional experiment shows that upregulation of miRNA-766-5p inhibits PCa proliferation, migration, and invasion. Furthermore, E2F transcription factor 3 (E2F3) is testified to be the downstream target gene of miRNA-766-5p. Finally, the rescue experiment revealed that miRNA-766-5p inhibition largely restores NEAT1 downregulation-mediated function on PCa progression, while E2F3 knockdown partly removes the effects of miRNA-766-5p inhibitor. Conclusions. In conclusion, NEAT1 facilitates PCa progression by targeting the miRNA-766-5p/E2F3 axis.
Funder
Jiangsu College of Nursing
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献