Cooperative Communications Based on Deep Learning Using a Recurrent Neural Network in Wireless Communication Networks

Author:

Rathika M.1,Sivakumar P.2ORCID,Ramash Kumar K.3ORCID,Garip Ilhan4

Affiliation:

1. Department of Electronics and Communication Engineering, Kingston Engineering College, Vellore, Tamil Nadu, India

2. Department of Electronics and Communication Engineering, Dr. N. G. P Institute of Technology, Coimbatore, Tamil Nadu, India

3. Department of Electrical and Electronics Engineering, Dr. N. G. P. Institute of Technology, Coimbatore 48, Tamil Nadu, India

4. Department of Electrical and Electronics Engineering, Nisantasi University, Istanbul, Turkey

Abstract

In recent years, cooperative communication (CC) technology has emerged as a hotspot for testing wireless communication networks (WCNs), and it will play an important role in the spectrum utilization of future wireless communication systems. Instead of running node transmissions at full capacity, this design will distribute available paths across multiple relay nodes to increase the overall throughput. The modeling WCNs coordination processes, as a recurrent mechanism and recommending a deep learning-based transfer choice, propose a recurrent neural network (RNN) process-based relay selection in this research article. This network is trained according to the joint receiver and transmitter outage likelihood and shared knowledge, and without the use of a model or prior data, the best relay is picked from a set of relay nodes. In this study, we make use of the RNN to do superdimensional (high-layered) processing and increase the rate of learning and also have a neural network (NN) selection testing to study the communication device, find out whether or not it can be used, find out how much the system is capable of, and look at how much energy the network needs. In these simulations, it has been shown that the RNN scheme is more effective on these targets and allows the design to keep converged over a longer period of time. We will compare the accuracy and efficiency of our RNN processed-based relay selection methods with long short-term memory (LSTM), gated recurrent units (GRU), and bidirectional long short-term memory (BLSTM),which are all acronyms for long short-term memory methods.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3