Biodistribution and Tumors MRI Contrast Enhancement of Magnetic Nanocubes, Nanoclusters, and Nanorods in Multiple Mice Models

Author:

Naumenko V.1ORCID,Garanina A.12,Nikitin A.12,Vodopyanov S.1,Vorobyeva N.1,Tsareva Y.1,Kunin M.2,Ilyasov A.1,Semkina A.1,Chekhonin V.3,Abakumov M.13,Majouga A.14

Affiliation:

1. National University of Science and Technology (MISIS), Moscow 119049, Russia

2. M.V. Lomonosov Moscow State University, Moscow 119991, Russia

3. Department of Medical Nanobiotechnology, Russian National Research Medical University, Moscow 117997, Russia

4. D. Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia

Abstract

Magnetic resonance imaging (MRI) is a powerful technique for tumor diagnostics. Iron oxide nanoparticles (IONPs) are safe and biocompatible tools that can be used for further enhancing MR tumor contrasting. Although numerous IONPs have been proposed as MRI contrast agents, low delivery rates to tumor site limit its application. IONPs accumulation in malignancies depends on both IONPs characteristics and tumor properties. In the current paper, three differently shaped Pluronic F-127-modified IONPs (nanocubes, nanoclusters, and nanorods) were compared side by side in three murine tumor models (4T1 breast cancer, B16 melanoma, and CT26 colon cancer). Orthotopic B16 tumors demonstrated more efficient IONPs uptake than heterotopic implants. Magnetic nanocubes (MNCb) had the highest r2-relaxivity in vitro (300 mM−1·s−1) compared with magnetic nanoclusters (MNCl, 104 mM−1·s−1) and magnetic nanorods (MNRd, 51 mM−1·s−1). As measured by atomic emission spectroscopy, MNCb also demonstrated better delivery efficiency to tumors (3.79% ID) than MNCl (2.94% ID) and MNRd (1.21% ID). Nevertheless, MNCl overperformed its counterparts in tumor imaging, providing contrast enhancement in 96% of studied malignancies, whereas MNCb and MNRd were detected by MRI in 73% and 63% of tumors, respectively. Maximum MR contrasting efficiency for MNCb and MNCl was around 6-24 hours after systemic administration, whereas for MNRd maximum contrast enhancement was found within first 30 minutes upon treatment. Presumably, MNRd poor MRI performance was due to low r2-relaxivity and rapid clearance by lungs (17.3% ID) immediately after injection. MNCb and MNCl were mainly captured by the liver and spleen without significant accumulation in the lungs, kidneys, and heart. High biocompatibility and profound accumulation in tumor tissues make MNCb and MNCl the promising platforms for MRI-based tumor diagnostics and drug delivery.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

Hindawi Limited

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3