Dual Quaternion Based Close Proximity Operation for In-Orbit Assembly via Model Predictive Control

Author:

Sun Chuqi1,Xiao Yan1,Sun Zhaowei1ORCID,Ye Dong1

Affiliation:

1. Research Center of Satellite Technology, Harbin Institute of Technology, Harbin 150001, China

Abstract

This paper studies the problem of guidance and control for autonomous in-orbit assembly. A six-degree-of-freedom (6-DOF) motion control for in-orbit assembly close proximity operation between a service satellite and a target satellite is addressed in detail. The dynamics based on dual quaternion are introduced to dispose the coupling effect between translation and rotation in a succinct frame, in which relevant perturbation and disturbance are involved. With the consideration of economical principle for fuel consume, a generic control system based on model predictive control (MPC) is then designed to generate a suboptimal control sequence for rendezvous trajectory considering actuator output saturation. The stability and robustness issues of the MPC-based control system are analyzed and proved. Numerical simulations are presented to demonstrate the effectiveness and robustness of the proposed control scheme, while additional comparisons for diverse horizons of the MPC are further conducted.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3