UAV and Its Approach in Oil and Gas Pipeline Leakage Detection

Author:

Akande Saheed1,Adetunla Adedotun1ORCID,Olanrewaju Tosin1,Adeoye Adeyinka1

Affiliation:

1. Department of Mechanical & Mechatronics Engineering, Afe Babalola University, Ado, Nigeria

Abstract

The synergy of vibration and gas sensors with unmanned aerial vehicles for a low-response-time Leakage Detection System (LDS) is explored in this work. Several pipeline accidents have occurred, most of which were triggered by untimely detection of pipe leakages in systems conveying oil and gas in many developing countries. The consequences of this include human casualties, environmental degradation, economic loss, and loss of resources. To limit the damages caused by inevitable leakages, a low-time-response system for leakage detection is required. Response time derived from the LDS is compared to the typical response time obtained from an existing system to determine the efficiency of the developed system. A comparative analysis of the response time of the designed LDS and existing systems reveals that the designed LDS response time is 1146.7% faster and having a pictorial view of the localized area of interest would go a long way to preventing unnecessary mobilization for site visits and eradicating the costly effect of false alarms.

Publisher

Hindawi Limited

Subject

General Computer Science,Control and Systems Engineering

Reference10 articles.

1. A small unmanned flapping airvehicle ‘Ornithopter’;I. Dubey;International Journal of Scientific Engineering and Research,2017

2. Detection of Natural Gas Leakages Using a Laser-Based Methane Sensor and UAV

3. UAV-based gas pipeline leak detection;T. R. Bretschneider

4. Airborne System for Pipeline Surveillance Using an Unmanned Aerial Vehicle

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3