Human Neutrophil Peptides 1–3 as Gastric Cancer Tissue Markers Measured by MALDI-Imaging Mass Spectrometry: Implications for Infiltrated Neutrophils as a Tumor Target

Author:

Cheng Chun-Chia12,Chang Jungshan1345,Chen Ling-Yun6,Ho Ai-Sheng7,Huang Ker-Jer8,Lee Shui-Cheng2,Mai Fu-Der193,Chang Chun-Chao10

Affiliation:

1. Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan

2. Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan

3. Biomedical Mass Imaging Research Center, Taipei Medical University, Taipei, Taiwan

4. Neuroscience Research Center, Taipei Medical University Hospital, Taipei, Taiwan

5. Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, Taiwan

6. Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan

7. Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan

8. Chung-Shan Institute of Science & Technology Armaments Bureau, Taoyuan, Taiwan

9. Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei, Taiwan

10. Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University Hospital, Taipei, Taiwan

Abstract

Objective: Human neutrophil peptides (HNPs) -1, -2 and -3 are significantly upregulated and were reported as biomarkers in gastric cancer (GC). However, the tissue location and function of HNPs 1-3 are still unclear in GC, and the spatial distribution of the triad needs to be disclosed. The aims of this study were to investigate the distribution and relationships among HNPs-1, -2 and -3, and assess whether infiltrated neutrophils accumulate in gastric tumor.Methods: In this study, paired samples (n=33) of the GC tissues and adjacent normal tissues from the same patients were obtained from surgery. Expression of HNPs 1-3 were detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The distributions of the HNPs 1-3 in GC tissues were investigated. After verification of HNPs-1 by immunohistochemistry, infiltrated neutrophils were also detected. Then, an in vitro assay was used to observe the binding capacity and measure the cytotoxic effect of HNPs-1 against AGS cells.Results: Comparing to neighboring normal tissue, expressional level of HNPs 1-3 were significantly higher and their distributions overlapped in cancerous tissues of GC patients with high abundance in the lamina propria, whereas HNPs-1 was identified as the highest major peak. Moreover, HNPs-1, -2 and -3 correlated with each other. Besides, we also observed that increased infiltrated neutrophils accumulating in GC tissues, indicating that a strong positive correlation between HNPs 1-3 and infiltrated neutrophils. In addition, the further investigated demonstrated that the major peptide, HNPs-1, was statistically increased with the advance of tumor development from the early to advanced stage of GC (p < 0.05). Moreover, we also noticed that HNPs-1 with a great binding capacity to GC AGS cells in vitro can inhibit tumor cell growth.Conclusions: Our results suggest that neutrophil secreted peptides, HNPs 1-3, increased in the GC tissues and could be used as potential biomarkers detected using MALDI-TOF MS, implying that elevated neutrophils may be used as a tumor target for tumor treatment. The binding capacity of HNPs-1 with GC cells implies that tracking molecules conjugated with HNPs-1 could be applied as a specific probe for GC diagnoses.

Funder

Atomic Energy Council

Publisher

Hindawi Limited

Subject

Biochemistry, medical,Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3