Affiliation:
1. Zhejiang University, School of Economics, Zhejiang, China
2. Zhejiang University, School of the Public Affairs, Zhejiang, China
Abstract
Investors are frequently concerned with the potential return from changes in a company’s stock price. However, stock price fluctuations are frequently highly nonlinear and nonstationary, rendering them to be uncontrollable and the primary reason why the majority of investors earn low long-term returns. Historically, people have always simulated and predicted using classic econometric models and simple machine learning models. In recent years, an increasing amount of research has been conducted using more complex machine learning and deep learning methods to forecast stock prices, and their research reports also indicate that their prediction accuracy is gradually improving. While the prediction results and accuracy of these models improve over time, their adaptability in a volatile market environment is questioned. Highly optimized machine learning algorithms include the following: FNN and the RNN are incapable of predicting the stock price of random walks and their results are frequently not consistent with stock price movements. The purpose of this article is to increase the accuracy and speed of stock price volatility prediction by incorporating the PG method’s deep reinforcement learning model. Finally, our tests demonstrate that the new algorithm’s prediction accuracy and reward convergence speed are significantly higher than those of the traditional DRL algorithm. As a result, the new algorithm is more adaptable to fluctuating market conditions.
Subject
Computer Science Applications,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献