MZF1 Transcriptionally Activated MicroRNA-328-3p Suppresses the Malignancy of Stomach Adenocarcinoma via Inhibiting CD44

Author:

Qi Zining1ORCID,Wang Jing2ORCID,Li Yaoping3ORCID,Xu Yanzhao4ORCID

Affiliation:

1. Department of Gastrointestinal Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China

2. Department of Head and Neck Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China

3. Department of Colorectal Anorectal Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China

4. Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China

Abstract

MicroRNA-328-3p (miR-328-3p) plays a critical role in mediating the progression of multiple types of cancers. To date, no study has concentrated on the molecular mechanism of miR-328-3p in mediating stomach adenocarcinoma (STAD). In this study, it was found that miR-328-3p was downregulated in STAD, and inhibition of miR-328-3p significantly promoted the growth, migration, invasion, and stemness of STAD cells, while miR-328-3p overexpression exerted reverse effects. Through bioinformatics analysis, it was uncovered that a cluster of differentiation 44 (CD44) was upregulated in STAD and closely associated with the prognosis of STAD patients. Mechanistically, we identified CD44 as the target gene of miR-328-3p. Notably, knockdown of CD44 abolished the promoting function of miR-328-3p inhibitor in the development of STAD. Moreover, myeloid zinc finger protein 1 (MZF1) was confirmed as an upstream transcription factor for miR-328-3p, which is involved in enhancing miR-328-3p expression. In addition, the role of MZF1 downregulation in the malignant traits of STAD cells was blocked by miR-328-3p overexpression. More importantly, upregulation of miR-328-3p efficiently suppressed STAD tumor growth in vivo. Collectively, our findings illustrated that MZF1-mediated miR-328-3p acted as a cancer suppressor in STAD progression via regulation of CD44, which suggested the possibility of the MZF1/miR-328-3p/CD44 axis as a novel promising therapeutic candidate for STAD.

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3