Affiliation:
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
Abstract
Oil-water two-phase flow through the complex pipeline, consisting of varying pipes and fittings in series or parallel, is commonly encountered in the petroleum industry. However, the majority of the current study is mainly limited to single constant-radius pipe. In this paper, a unified model of oil-water two-phase flow in the complex pipeline is developed based on the combination of pipe serial-parallel theory, flow pattern transformation criterion, two-fluid model, and homogenous model. A case is present to verify the unified model and compare with CFD results. The results show that the proposed unified model can achieve excellent performance in predicting both the flow distributions and pressure drops of oil-water two-phase flow in the complex pipeline. Compared with CFD results for water volumetric fractions ranging from 0% to 100%, the highest absolute percentage error of the proposed model is 14.4% and the average is 9.8%.
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献