Affiliation:
1. Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
2. Department of General Practice, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
3. Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
Abstract
The purpose of this study was to summarize the clinical characteristics and risk factors of major adverse cardiovascular events (MACEs) in patients who had had acute myocardial infarction (AMI) within 1 year of percutaneous coronary intervention (PCI). A total of 421 AMI patients who were treated with PCI and experienced MACEs within 1 year of their admission were included in this retrospective study. In addition, patients were matched for age, sex, and presentation with 561 patients after AMI who had not had MACEs. The clinical characteristics and risk factors for MACEs within 1 year in AMI patients were investigated, to develop a nomogram for MACEs based on univariate and multivariate analyses. The
statistic was used to assess the discriminative performance of the nomogram. In addition, calibration curve and decision curve analyses were conducted to validate the calibration performance and utility, respectively, of the nomogram. After univariate and multivariate analyses, a nomogram was constructed based on age (odds ratio (OR): 1.030; 95% confidence interval (CI): 1.014–1.047), diabetes mellitus (OR: 1.667; 95% CI: 1.151–2.415), low-density lipoprotein cholesterol (OR: 1.332; 95% CI: 1.134–1.565), uric acid (OR: 1.003; 95% CI: 1.001–1.005), lipoprotein (a) (OR: 1.003; 95% CI: 1.002–1.003), left ventricular ejection fraction (OR: 0.929; 95% CI: 0.905–0.954), Syntax score (OR: 1.075; 95% CI: 1.053–1.097), and hypersensitive troponin T (OR: 1.002; 95% CI: 1.002–1.003). The
statistic was 0.814. The calibration curve showed good concordance of the nomogram, while decision curve analysis demonstrated satisfactory positive net benefits. We developed a convenient, practical, and effective prediction model for predicting MACEs in AMI patients within 1 year of PCI. To ensure generalizability, this model requires external validation.
Funder
Xuzhou Science and Technology Bureau
Subject
Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology,General Medicine