Rapid Discrimination of Pseudomonas aeruginosa ST175 Isolates Involved in a Nosocomial Outbreak Using MALDI-TOF Mass Spectrometry and FTIR Spectroscopy Coupled with Machine Learning

Author:

Candela Ana12ORCID,Arroyo Manuel J.3ORCID,Sánchez-Cueto María12ORCID,Marín Mercedes1245ORCID,Cercenado Emilia1245ORCID,Méndez Gema3ORCID,Muñoz Patricia1245ORCID,Mancera Luis3ORCID,Rodríguez-Temporal David12ORCID,Rodríguez-Sánchez Belén12ORCID

Affiliation:

1. Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain

2. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain

3. Clover Bioanalytical Software, Av. del Conocimiento, 41, Granada 18016, Spain

4. CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain

5. Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain

Abstract

The goal of this study was to evaluate matrix-assisted laser desorption ionization–iime of flight mass spectrometry (MALDI-TOF MS) and Fourier-transform infrared spectroscopy (FTIR-S) as diagnostic alternatives to DNA-based methods for the detection of Pseudomonas aeruginosa sequence type (ST) 175 isolates involved in a hospital outbreak. For this purpose, 27 P. aeruginosa isolates from an outbreak detected in the Hematology department of our hospital were analyzed by the above-mentioned methodologies. Previously, these isolates had been characterized by pulse-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS). Besides, eight P. aeruginosa isolates were analyzed as unrelated controls. MALDI-TOF MS spectra were acquired by transferring several colonies onto the MALDI target and covering them with 1 µl of formic acid 100% and 1 µl of α-ciano-3,4-hidroxicinamic acid matrix. For the analysis with FTIR-S, colonies were resuspended in 70% ethanol and sterile water according to the manufacturer’s instructions. Spectra from both methodologies were analyzed using Clover Biosoft Software, which allowed data modeling using different algorithms and validation of the classifying models. Three outbreak-specific biomarkers were found at 5,169, 6,915, and 7,236 m/z in MALDI-TOF MS spectra. Classification models based on these three biomarkers showed the same discrimination power displayed by PFGE. Besides, K-nearest neighbor algorithm allowed the discrimination of the same clusters provided by WGS and the validation of this model achieved 97.0% correct classification. On the other hand, FTIR-S showed a discrimination power similar to PFGE and reached correct discrimination of the different STs analyzed. In conclusion, the combination of both technologies evaluated, paired with machine learning tools, may represent a powerful tool for real-time monitoring of high-risk clones and isolates involved in nosocomial outbreaks.

Funder

European Regional Development Fund

Publisher

Hindawi Limited

Subject

General Veterinary,General Immunology and Microbiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3