Complex Modeling of the Effects of Blasting on the Stability of Surrounding Rocks and Embankment in Water-Conveyance Tunnels

Author:

Zhou Xian-qi12,Yu Jin13ORCID,Ye Jin-bi2,Liu Shi-yu1ORCID,Liao Ren-guo1,Li Xiu-wen2

Affiliation:

1. Fujian Research Center for Tunneling and Urban Underground Space Engineering, Huaqiao University, Xiamen 361021, China

2. School of Civil Engineering & Architecture, Xiamen University of Technology, Xiamen 361024, China

3. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China

Abstract

Blasting in water-conveyance tunnels that cross rivers is vital for the safety and stability of embankments. In this work, a tunnel project that crosses the Yellow River in the north district of the first-phase Eastern Line of the South-to-North Water Diversion Project was selected as the research object. A complex modeling and numerical simulation on embankment stability with regard to the blasting power of the tunnel was conducted using the professional finite difference software FLAC3D to disclose the relationships between the blasting seismic waves with vibration velocity and embankment displacement under different excavation steps. Calculation results demonstrated that displacement generally attenuated from the tunnel wall to the internal structure of rocks under the effect of blasting seismic waves. The tunnel wall was in tension, and tensile stress gradually transformed into compressive stress with increased depth into the rocks. The curtain-grouting zone was mainly concentrated in the compressive zones. For different excavation steps, the vibration velocity at different feature points was high at the beginning of blasting and then gradually decreased. The resultant displacement was relatively small in the early excavation period and slowly increased as blasting progressed. The effects of different excavation steps on the safety of surrounding rocks and embankment under blasting seismic waves were simulated. We found that the blasting-induced vibration velocity was within the safe range of the code and that the calculated displacement was within the allowed range. Numerical simulation was feasible to assess the safety and stability of engineering projects.

Funder

Huaqiao University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3