Aerobic Training Prevents Heatstrokes in Calsequestrin-1 Knockout Mice by Reducing Oxidative Stress

Author:

Guarnier Flávia Alessandra123ORCID,Michelucci Antonio12,Serano Matteo1,Pietrangelo Laura12,Pecorai Claudia14,Boncompagni Simona12ORCID,Protasi Feliciano14ORCID

Affiliation:

1. Center for Research on Ageing and Translational Medicine (CeSI-MeT), University G. d’Annunzio, 66100 Chieti, Italy

2. Department of Neuroscience, Imaging, and Clinical Sciences (DNICS), University G. d’Annunzio, 66100 Chieti, Italy

3. Department of General Pathology, Londrina State University, 86057-970 Londrina, PR, Brazil

4. Department of Medicine and Aging Science (DMSI), University G. d’Annunzio, 66100 Chieti, Italy

Abstract

Calsequestrin-1 knockout (CASQ1-null) mice suffer lethal episodes when exposed to strenuous exercise and environmental heat, crises known as exertional/environmental heatstroke (EHS). We previously demonstrated that administration of exogenous antioxidants (N-acetylcysteine and trolox) reduces CASQ1-null mortality during exposure to heat. As aerobic training is known to boost endogenous antioxidant protection, we subjected CASQ1-null mice to treadmill running for 2 months at 60% of their maximal speed for 1 h, 5 times/week. When exposed to heat stress protocol (41°C/1 h), the mortality rate of CASQ1-null mice was significantly reduced compared to untrained animals (86% versus 16%). Protection from heatstrokes was accompanied by a reduced increase in core temperature during the stress protocol and by an increased threshold of response to caffeine of isolated extensor digitorum longus muscles during in vitro contracture test. At cellular and molecular levels, aerobic training (i) improved mitochondrial function while reducing their damage and (ii) lowered calpain activity and lipid peroxidation in membranes isolated from sarcoplasmic reticulum and mitochondria. Based on this evidence, we hypothesize that the protective effect of aerobic training is essentially mediated by a reduction in oxidative stress during exposure of CASQ1-null mice to adverse environmental conditions.

Funder

Italian Telethon ONLUS Foundation

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3