Fabrication of Novel Biodegradableα-Tricalcium Phosphate Cement Set by Chelating Capability of Inositol Phosphate and Its Biocompatibility

Author:

Konishi Toshiisa12ORCID,Mizumoto Minori2,Honda Michiyo2,Horiguchi Yukiko3,Oribe Kazuya3,Morisue Hikaru4,Ishii Ken24,Toyama Yoshiaki4,Matsumoto Morio24,Aizawa Mamoru12

Affiliation:

1. Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan

2. Kanagawa Academy of Science and Technology (KAST), KSP East 404, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan

3. Showa Ika Kohgyo Co., Ltd., 8-7 Hanei-nishimachi, Toyohashi 441-8026, Japan

4. Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan

Abstract

Biodegradableα-tricalcium phosphate (α-TCP) cement based on the chelate-setting mechanism of inositol phosphate (IP6) was developed. This paper examined the effect of the milling time ofα-TCP powder on the material properties of the cement. In addition, biocompatibility of the result cementin vitrousing osteoblasts andin vivousing rabbit models will be studied as well. Theα-TCP powders were ballmilled using ZrO2beads in pure water for various durations up to 270 minutes, with a single-phaseα-TCP obtained at ballmilling for 120 minutes. The resulting cement was mostly composed ofα-TCP phase, and the compressive strength of the cement was8.5±1.1 MPa, which suggested that the cements set with keeping the crystallite phase of starting cement powder. The cell-culture test indicated that the resulting cements were biocompatible materials.In vivostudies showed that the newly formed bones increased with milling time at a slight distance from the cement specimens and grew mature at 24 weeks, and the surface of the cement was resorbed by tartrate-resistant acid phosphatase-(TRAP-)positive osteoclast-like cells until 24 weeks of implantation. The presentα-TCP cement is promising for application as a novel paste-like artificial bone with biodegradability and osteoconductivity.

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3