Effect of Nano-Magnesium Hydride on the Thermal Decomposition Behaviors of RDX

Author:

Yao Miao1,Chen Liping1,Rao Guoning1,Zou Jianxin2,Zeng Xiaoqin2,Peng Jinhua1

Affiliation:

1. School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China

2. Shanghai Engineering Research Center of Magnesium Materials and Application, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

In order to improve the detonation performance of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) explosive, addictives with high heat values were used, and magnesium hydride (MgH2) is one of the candidates. However, it is important to see whether MgH2is a safe addictive. In this paper, the thermal and kinetic properties of RDX and mixture of RDX/MgH2were investigated by differential scanning calorimeter (DSC) and accelerating rate calorimeter (ARC), respectively. The apparent activation energy (E) and frequency factor (A) of thermal explosion were calculated based on the data of DSC experiments using the Kissinger and Ozawa approaches. The results show that the addition of MgH2decreases bothEandAof RDX, which means that the mixture of RDX/MgH2has a lower thermal stability than RDX, and the calculation results obtained from the ARC experiments data support this too. Besides, the most probable mechanism functions about the decomposition of RDX and RDX/MgH2were given in this paper which confirmed the change of the decomposition mechanism.

Funder

Doctoral Program of Higher Education of China

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3