Lifetime-Maximized Strong Barrier Coverage of 3D Camera Sensor Networks

Author:

Hong Yi12ORCID,Luo Chuanwen12ORCID,Li Deying3ORCID,Chen Zhibo12ORCID,Wang Xiyun1

Affiliation:

1. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China

2. Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China

3. School of Information, Renmin University of China, Beijing 100872, China

Abstract

Camera sensor networks (CSNs) have advantages on providing the precise and multimedia information for plenty of applications. The high coverage quality of CSNs especially satisfies the monitoring requirements of barrier coverage. In three-dimensional (3D) application scenarios, the tracking of the potential intruder in the monitored irregular spaces brings more difficulties and challenges on strong barrier coverage for CSNs. In this paper, we consider the strong barrier coverage problem in 3D CSNs and focus on the objective of monitoring the intruder with high resolution and maximizing the network lifetime. We firstly introduce the definition and hardness proof for the problem based on the irregular space model and the network model, which adopts the Region of Interest (ROI) sensing model with high effective resolution. Secondly, we design two sleep-and-awake scheduling algorithms for the problem in homogeneous and heterogeneous networks, respectively, which are based on the auxiliary graph transformation and the disjoint flows construction. To evaluate these algorithms’ performance on the lifetime maximization, we conduct extensive simulation experiments and analyze their results on their advantages and applicable scenarios.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3