Affiliation:
1. School of Metallurgy and Materials Engineering, Chongqing University of Science & Technology, Chongqing 401331, China
2. The Center of Material Analysis and Testing, Chongqing University of Science & Technology, Chongqing 401331, China
3. School of Nano & Advanced Materials Engineering, Changwon National University, Changwon 51140, Republic of Korea
Abstract
Plastic deformations, such as those obtained by shot peening on specimen surface, are an efficient way to improve the mechanical behavior of metals. Generally, scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) are commonly used to observe the complex microstructural evolutions, such as grain refinement and phase transformation, induced by the surface treatment. In this work, the microstructure of 347 stainless steel, after ultrasonic shot peening (USP) treatments, was investigated. SEM, EBSD, transmission electron microscopy, and X-ray diffraction were used to observe the microstructural evolutions, such as grain refinement and phase transformation. Deformation depth after the USP treatment was about 200 μm. Grain size on the treated surface layer was about 100 nm, with two phases: austenite and α′-martensite. The percentages of the austenite and α′-martensite phases were 54% and 46%, respectively, which constitute an exact expression of the degree of plastic deformation on austenitic stainless steel.
Funder
Chongqing Research Program of Basic Research and Frontier Technology
Subject
Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献