Automatic Recognition Method of Letter Images in English Self-Learning Based on Partial Differential Equation Method

Author:

Zhao Yu1,Du Shuping1,Li Ran1,Yue Hong2ORCID

Affiliation:

1. School of Foreign Languages, Xingtai University, Xingtai, Hebei 054000, China

2. School of Foreign Languages, Lanzhou Institute of Technology, Lanzhou, Gansu 730000, China

Abstract

According to the current situation of knowledge popularization, students simply rely on the knowledge learned in the classroom that is far from adapting to the development of modern society; so, every student needs to have the consciousness and ability of independent learning. The research of the English self-help learning system based on partial differential equation method comes into being with information network technology as the foundation for survival and development. The existing partial differential equation recognition models based on average curvature motion are all edge-based and need to use the external force defined by the image gradient to attract the zero level set (evolution curve) to move to the target edge and finally stay on the target edge. Therefore, it is difficult to obtain ideal results when extracting fuzzy or discrete boundaries (perceptual boundaries), and it is very sensitive to the selection of initial contour and noise. To solve this problem, this paper proposes a new recognition model of partial differential equations based on mean curvature motion. This overcomes some defects of existing edge models because it is region-based and does not require image gradient as a condition to stop evolution. The proposed model can avoid manual initial curve selection and allow stopping conditions to be set in the algorithm. In addition, in the numerical solution of partial differential equations, the existing model uses upwind difference scheme, and the semi-implicit additive operator separation method is adopted in this paper. Some other layers are added, and some hyperparameters are adjusted when the convolutional neural networks of inception PDEs are constructed by stacking the structure of inception PDEs. In the contrast experiment with the prototype, the software and hardware environment are the same, and the input is exactly the same. For the handwritten English alphabet data set, the variant structure can obtain more than 90% of the training accuracy and verification accuracy, which is better than the experimental accuracy of the prototype. In addition, because the inception PDE structure contains fewer parameters than the prototype, it is more computationally efficient and takes less training time per batch than the prototype.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3