Pharmacokinetic Comparisons of Mangiferin and Mangiferin Monosodium Salt in Rat Plasma by UPLC-MS/MS

Author:

Guo Hongbin1,Chen Mengqiao1,Li Mengran1,Hu Mingye2,Chen Baohua1,Zhou Chengyan1ORCID

Affiliation:

1. College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, 180 WuSi Road, Lianchi District, Baoding 071002, China

2. Department Gastroenterol, Wenzhou No. 3 Clinical Institute Affiliated Hospital, Wenzhou Medical University, 57 Canghou Street, Lucheng District, Wenzhou 325000, China

Abstract

Mangiferin (MG) is an active component in natural medicines, and various studies have been reported on pharmacological effects, but the low solubility and bioavailability of MG limit its wide application. The aim of the present study was to investigate the pharmacokinetic profiles of mangiferin (MG) and mangiferin monosodium salt (MG-Na) in rat plasma by UPLC-MS/MS, which were then compared between the two groups. An appropriate high sensitivity and selectivity ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was applied to the comparison of plasma pharmacokinetics in MG and MG-Na using carbamazepine as internal standard (IS). These results showed that there were statistically significant differences in the pharmacokinetic parameters between MG and MG-Na after a single oral administration at 100 mg/kg. When compared with pharmacokinetic parameters of MG, the AUC(0-t), AUC(0–∞), Cmax,K10, and Ka of MG-Na were increased by 5.6-, 5.7-, 20.8-, 8-, and 83.6-fold, while the Tmax and CL/F were decreased by 4- and 5.7-fold (P<0.001), respectively. t1/2 value showed an increasing trend, but was statistically significant between the two groups. Moreover, the AUC value in the MG-Na group was significantly increased and the relative bioavailability was calculated to be 570% when compared with that of the MG group. These results suggested that the salification reaction of MG can effectively enhance gastrointestinal absorption and relative bioavailability by improving solubility and membrane permeability.

Funder

Science and Technology Research and Development Guidance Plan of Baoding City

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3