Geomagnetic Energy Approach to Space Debris Deorbiting in a Low Earth Orbit

Author:

Feng Guanhua12,Li Wenhao12ORCID,Zhang Heng12

Affiliation:

1. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

2. School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The space debris removal problem needs to be solved urgently. Over 70% of debris is distributed between the 500 km and 1000 km low Earth orbits (LEO), and existing methods may be theoretically feasible but are not the high-efficiency and low-consumption methods for LEO debris removal. Based on the torque effect of a static magnet interacting with the geomagnetic field, a new spin angular momentum exchange (SAME) method by geomagnetic excitation (without working medium consumption) for LEO active debris deorbiting is proposed. The LEO delivery capability of this method is researched. Two kinds of spin angular momentum accumulation (SAMA) strategies are proposed. Then through numerical simulation under the dipole model and International Geomagnetic Reference Field (IGRF11) model, the results confirm the physical feasibility and basic performance of the proposed method. The method can be applied to the regions of the LEO below 1000 km with different altitudes/inclinations and eccentricities, and with existent magnetorquer technology, only several days of preparation is required for about 104 m·kg mechanism-scale-debris-mass deorbiting, which can be used for deorbiting missions in debris-intensive areas (altitude1000km); without consideration of external effects on the geomagnetic field distribution, it has the same deorbiting capability with that of the LEO below 1000 km when the altitude is over 1000 km. Besides, the method is characterized by explicit mechanism, flexible control strategy and application, and low dependence on the scale. Finally, the key technology requirements and future application of LEO active debris removal and on-orbit delivery by using SAME are prospected.

Funder

Key Project of Chinese National Programs for Fundamental Research and Development

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3