Biochemical Changes and Biological Origin of Key Odor Compound Generations in Pig Slurry during Indoor Storage Periods: A Pyrosequencing Approach

Author:

Jang Yu Na1,Jung Min Woong1ORCID

Affiliation:

1. National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea

Abstract

Production of odors is a complex process. Many bacterial species are involved in the production of an extensive array of key odor compounds in stored pig slurry. Understanding of basic microbial communities and their role during storage periods is an essential way to control and prevent the odors generations. In this aspect, the pig slurry samples were taken directly from deep pits of finisher pig building every two weeks, their biochemical changes were analysed, and the indigenous bacterial communities that involve in offensive odor producing compounds were identified. The SCFA, BCFA, phenols, and indoles levels altered drastically in the slurry during storage periods. The COD, BOD, SS, P2O5, TKN, and NH4-N were increased in the stored slurry. Bacterial ecology indicatesFirmicutesandBacteroidetesphyla were dominantly found in pig slurry. Odorants produced in pig slurry were correlated with bacterial communities. Phenols, indoles, SCFA, and BCFA productions were positively correlated with bacteria species which comes under phyla ofFirmicutesandBacteroidetes.It seems that bacterial species underFirmicutesandBacteroidetesphyla play an important role in the offensive odor compounds production. Taken together, the prevention of these phyla bacterial growth and early discharge of pig slurry might reduce the offensive odor production.

Funder

RDA

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3