Extracting Moods from Songs and BBC Programs Based on Emotional Context

Author:

Petersen Michael Kai1,Butkus Andrius1

Affiliation:

1. Department of Informatics and Mathematical Modeling, Technical University of Denmark, Richard Petersens Plads, Building 321, 2800 Kongens Lyngby, Denmark

Abstract

The increasing amounts of media becoming available in converged digital broadcast and mobile broadband networks will require intelligent interfaces capable of personalizing the selection of content. Aiming to capture the mood in the content, we construct a semantic space based on tags, frequently used to describe emotions associated with music in thelast.fmsocial network. Implementing latent semantic analysis (LSA), we model the affective context of songs based on their lyrics, and apply a similar approach to extract moods from BBC synopsis descriptions of TV episodes using TV-Anytime atmosphere terms. Based on our early results, we propose that LSA could be implemented as machinelearning method to extract emotional context and model affective user preferences.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Media Technology,Communication

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Moody Mobile TV: Exploring TV Clips with Personalized Playlists;Lecture Notes in Computer Science;2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3