Computational Studies Applied to Flavonoids against Alzheimer’s and Parkinson’s Diseases

Author:

Monteiro Alex France M.1,Viana Jéssika De O.1,Nayarisseri Anuraj23,Zondegoumba Ernestine N.4ORCID,Mendonça Junior Francisco Jaime B.5ORCID,Scotti Marcus Tullius1ORCID,Scotti Luciana16ORCID

Affiliation:

1. Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil

2. In Silico Research Laboratory, Eminent Bioscience, Inodre - 452010, Madhya Pradesh, India

3. Bioinformatics Research Laboratory, LeGene Biosciences, Indore - 452010, Madhya Pradesh, India

4. Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaoundé, Cameroon

5. Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, João Pessoa, PB, Brazil

6. Teaching and Research Management-University Hospital, Federal University of Paraíba, João Pessoa, PB, Brazil

Abstract

Neurodegenerative diseases, such as Parkinson’s and Alzheimer’s, are understood as occurring through genetic, cellular, and multifactor pathophysiological mechanisms. Several natural products such as flavonoids have been reported in the literature for having the capacity to cross the blood-brain barrier and slow the progression of such diseases. The present article reports on in silico enzymatic target studies and natural products as inhibitors for the treatment of Parkinson’s and Alzheimer’s diseases. In this study we evaluated 39 flavonoids using prediction of molecular properties and in silico docking studies, while comparing against 7 standard reference compounds: 4 for Parkinson’s and 3 for Alzheimer’s. Osiris analysis revealed that most of the flavonoids presented no toxicity and good absorption parameters. The Parkinson’s docking results using selected flavonoids as compared to the standards with four proteins revealed similar binding energies, indicating that the compounds 8-prenylnaringenin, europinidin, epicatechin gallate, homoeriodictyol, capensinidin, and rosinidin are potential leads with the necessary pharmacological and structural properties to be drug candidates. The Alzheimer’s docking results suggested that seven of the 39 flavonoids studied, being those with the best molecular docking results, presenting no toxicity risks, and having good absorption rates (8-prenylnaringenin, europinidin, epicatechin gallate, homoeriodictyol, aspalathin, butin, and norartocarpetin) for the targets analyzed, are the flavonoids which possess the most adequate pharmacological profiles.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3