An Approach for Estimating Underground-Goaf Boundaries Based on Combining DInSAR with a Graphical Method

Author:

Bu Pu12,Li Chaokui2ORCID,Liao Mengguang2,Yang Wentao2ORCID,Zhu Chuanguang3,Fang Jun2

Affiliation:

1. School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

2. National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China

3. Hunan Province Key Laboratory of Coal Resources Clean-utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

The goaf left behind after mining has the potential to induce serious geological disasters due to the damaged internal structure of the rock. Estimating the boundary of the underground goaf can effectively control the occurrence of such disasters. However, traditional geophysical methods are inefficient and expensive and are particularly difficult to apply for a wide detection range. This paper proposes a new method for estimating the boundary of underground goaf using the differential interference synthetic aperture radar technique (DInSAR). More specifically, DInSAR is used to obtain the isoline of the subsidence basin above the goaf, and the direction of the two main sections of the goaf is then determined according to the basic law of mining subsidence. Following this, the basic principles of the probability integral and the graphical methods are combined to determine the mining boundary of the strike section and the incline section of the goaf. Finally, six geometric parameters reflecting the boundary of the goaf are obtained. Experiments on simulated and measured data indicate that the proposed method is feasible, with the average relative errors of the simulated and measured data reaching and maintained at 2.2% and 3.7%, respectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3