Author:
Moradian M.,Khalaj-Amirhosseini M.
Abstract
A general method is introduced to obtain the propagation constants of the inhomogeneous dielectric waveguide. The periodic Fourier transform is applied to the normalized Maxwell's equations and makes the field components periodic. Then they are expanded in Fourier series. Finally, the trapezoidal rule is applied to approximate the convolution integral which leads to a set of coupled second-order differential equations that can be solved as an eigenvalue-eigenvector problem. The normalized propagation constant can be obtained as the square roots of the eigenvalues of the coefficient matrices. The proposed method is applied to the dielectric waveguide with a two-layered dielectric profile in the transverse direction, and the first four-confined TE modes are obtained. The propagation constants for the mentioned dielectric waveguide are also derived analytically and are then compared with those derived by the proposed method. Comparison of results shows the efficacy of the proposed method.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Radiation