Experimental and Theoretical Investigations of Mouldability for Feedstocks Used in Powder Injection Moulding

Author:

Karatas Çetin,Sözen Adnan,Arcaklioglu Erol,Erguney Sami

Abstract

Experimental and theoretical analyses of mouldability for feedstocks used in powder injection moulding are performed. This study covers two main analyses. (i)The experimental analysis: the barrel temperature, injection pressure, and flow rate are factors for powder injection moulding (PIM). Powder-binder mixture used as feedstock in PIM requires a little more attention and sensitivity. Obtaining the balance among pressure, temperature, and especially flow rate is the most important aspect of undesirable conclusions such as powder-binder separation, sink marks, and cracks in moulded party structure. In this study, available feedstocks used in PIM were injected in three different cavities which consist of zigzag form, constant cross-section, and stair form (in five different thicknesses) and their mouldability is measured. Because of the difference between material and binder, measured lengths were different. These were measured as 533 mm, 268 mm, 211 mm, and 150 mm in advanced materials trade marks Fe–2Ni, BASF firm Catamould A0-F, FN02, and 316L stainless steel, respectively. (ii)The theoretical analysis: the use of artificial neural network (ANN) has been proposed to determine the mouldability for feedstocks used in powder injection moulding using results of experimental analysis. The back-propagation learning algorithm with two different variants and logistic sigmoid transfer function were used in the network. In order to train the neural network, limited experimental measurements were used as training and test data. The best fitting training data set was obtained with three and four neurons in the hidden layer, which made it possible to predict yield length with accuracy at least as good as that of the experimental error, over the whole experimental range. After training, it was found that theR2values are 0.999463, 0.999445, 0.999574, and 0.999593 for Fe–2Ni, BASF firm Catamould A0-F, FN02, and 316L stainless steel, respectively. Similarly, these values for testing data are 0.999129, 0.999666, 0.998612, and 0.997512, respectively. As seen from the results of mathematical modeling, the calculated yield lengths are obviously within acceptable uncertainties.

Funder

Government Planning Organization of Turkey

Publisher

Hindawi Limited

Subject

Computer Science Applications,General Engineering,Modelling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3