An Energy-Efficient Silicon Photonic-Assisted Deep Learning Accelerator for Big Data

Author:

Li Mengkun1ORCID,Wang Yongjian2ORCID

Affiliation:

1. School of Management, Capital Normal University, Beijing 100089, China

2. National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing 100029, China

Abstract

Deep learning has become the most mainstream technology in artificial intelligence (AI) because it can be comparable to human performance in complex tasks. However, in the era of big data, the ever-increasing data volume and model scale makes deep learning require mighty computing power and acceptable energy costs. For electrical chips, including most deep learning accelerators, transistor performance limitations make it challenging to meet computing’s energy efficiency requirements. Silicon photonic devices are expected to replace transistors and become the mainstream components in computing architecture due to their advantages, such as low energy consumption, large bandwidth, and high speed. Therefore, we propose a silicon photonic-assisted deep learning accelerator for big data. The accelerator uses microring resonators (MRs) to form a photonic multiplication array. It combines photonic-specific wavelength division multiplexing (WDM) technology to achieve multiple parallel calculations of input feature maps and convolution kernels at the speed of light, providing the promise of energy efficiency and calculation speed improvement. The proposed accelerator achieves at least a 75x improvement in computational efficiency compared to the traditional electrical design.

Funder

Beijing Municipal Education Commission

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optical Comb-Based Monolithic Photonic-Electronic Accelerators for Self-Attention Computation;IEEE Journal of Selected Topics in Quantum Electronics;2024-09

2. The Most Adjusted Predictive Models for Energy Costs;SpringerBriefs in Applied Sciences and Technology;2024

3. LiteCON : An All-photonic Neuromorphic Accelerator for Energy-efficient Deep Learning;ACM Transactions on Architecture and Code Optimization;2022-09

4. Research on Acquisition and Translation Methods of English and Chinese Database Based on Big Data;2022 6th International Conference on Wireless Communications and Applications (ICWCAPP);2022-08

5. Design automation of photonic resonator weights;Nanophotonics;2022-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3